A company's Machine Learning Specialist needs to improve the training speed of a time-series forecasting model using TensorFlow. The training is currently implemented on a single-GPU machine and takes approximately 23 hours to complete. The training needs to be run daily.
The model accuracy js acceptable, but the company anticipates a continuous increase in the size of the training data and a need to update the model on an hourly, rather than a daily, basis. The company also wants to minimize coding effort and infrastructure changes
What should the Machine Learning Specialist do to the training solution to allow it to scale for future demand?
A. Do not change the TensorFlow code. Change the machine to one with a more powerful GPU to speed up the training.
B. Change the TensorFlow code to implement a Horovod distributed framework supported by Amazon SageMaker. Parallelize the training to as many machines as needed to achieve the business goals.
C. Switch to using a built-in AWS SageMaker DeepAR model. Parallelize the training to as many machines as needed to achieve the business goals.
D. Move the training to Amazon EMR and distribute the workload to as many machines as needed to achieve the business goals.
An employee found a video clip with audio on a company's social media feed. The language used in the video is Spanish. English is the employee's first language, and they do not understand Spanish. The employee wants to do a sentiment analysis.
What combination of services is the MOST efficient to accomplish the task?
A. Amazon Transcribe, Amazon Translate, and Amazon Comprehend
B. Amazon Transcribe, Amazon Comprehend, and Amazon SageMaker seq2seq
C. Amazon Transcribe, Amazon Translate, and Amazon SageMaker Neural Topic Model (NTM)
D. Amazon Transcribe, Amazon Translate, and Amazon SageMaker BlazingText
A Machine Learning Specialist is working for a credit card processing company and receives an unbalanced dataset containing credit card transactions. It contains 99,000 valid transactions and 1,000 fraudulent transactions The Specialist is asked to score a model that was run against the dataset The Specialist has been advised that identifying valid transactions is equally as important as identifying fraudulent transactions What metric is BEST suited to score the model?
A. Precision
B. Recall
C. Area Under the ROC Curve (AUC)
D. Root Mean Square Error (RMSE)
A Machine Learning Specialist needs to be able to ingest streaming data and store it in Apache Parquet files for exploration and analysis. Which of the following services would both ingest and store this data in the correct format?
A. AWSDMS
B. Amazon Kinesis Data Streams
C. Amazon Kinesis Data Firehose
D. Amazon Kinesis Data Analytics
A Machine Learning Specialist was given a dataset consisting of unlabeled data The Specialist must create a model that can help the team classify the data into different buckets What model should be used to complete this work?
A. K-means clustering
B. Random Cut Forest (RCF)
C. XGBoost
D. BlazingText
An Amazon SageMaker notebook instance is launched into Amazon VPC The SageMaker notebook references data contained in an Amazon S3 bucket in another account The bucket is encrypted using SSE-KMS The instance returns an access denied error when trying to access data in Amazon S3.
Which of the following are required to access the bucket and avoid the access denied error? (Select THREE )
A. An AWS KMS key policy that allows access to the customer master key (CMK)
B. A SageMaker notebook security group that allows access to Amazon S3
C. An 1AM role that allows access to the specific S3 bucket
D. A permissive S3 bucket policy
E. An S3 bucket owner that matches the notebook owner
F. A SegaMaker notebook subnet ACL that allow traffic to Amazon S3.
A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket. A Machine Learning Specialist wants to use SQL to run queries on this data. Which solution requires the LEAST effort to be able to query this data?
A. Use AWS Data Pipeline to transform the data and Amazon RDS to run queries.
B. Use AWS Glue to catalogue the data and Amazon Athena to run queries.
C. Use AWS Batch to run ETL on the data and Amazon Aurora to run the queries.
D. Use AWS Lambda to transform the data and Amazon Kinesis Data Analytics to run queries.
Amazon Connect has recently been tolled out across a company as a contact call center The solution has been configured to store voice call recordings on Amazon S3 The content of the voice calls are being analyzed for the incidents being discussed by the call operators Amazon Transcribe is being used to convert the audio to text, and the output is stored on Amazon S3 Which approach will provide the information required for further analysis?
A. Use Amazon Comprehend with the transcribed files to build the key topics
B. Use Amazon Translate with the transcribed files to train and build a model for the key topics
C. Use the AWS Deep Learning AMI with Gluon Semantic Segmentation on the transcribed files to train and build a model for the key topics
D. Use the Amazon SageMaker k-Nearest-Neighbors (kNN) algorithm on the transcribed files to generate a word embeddings dictionary for the key topics
A Machine Learning Specialist is building a convolutional neural network (CNN) that will classify 10 types of animals. The Specialist has built a series of layers in a neural network that will take an input image of an animal, pass it through a series of convolutional and pooling layers, and then finally pass it through a dense and fully connected layer with 10 nodes The Specialist would like to get an output from the neural network that is a probability distribution of how likely it is that the input image belongs to each of the 10 classes.
Which function will produce the desired output?
A. Dropout
B. Smooth L1 loss
C. Softmax
D. Rectified linear units (ReLU)
Machine Learning Specialist is working with a media company to perform classification on popular articles from the company's website. The company is using random forests to classify how popular an article will be before it is published. A sample of the data being used is below.
Given the dataset, the Specialist wants to convert the Day_Of_Week column to binary values. What technique should be used to convert this column to binary values?
A. Binarization
B. One-hot encoding
C. Tokenization
D. Normalization transformation
Nowadays, the certification exams become more and more important and required by more and more enterprises when applying for a job. But how to prepare for the exam effectively? How to prepare for the exam in a short time with less efforts? How to get a ideal result and how to find the most reliable resources? Here on Vcedump.com, you will find all the answers. Vcedump.com provide not only Amazon exam questions, answers and explanations but also complete assistance on your exam preparation and certification application. If you are confused on your MLS-C01 exam preparations and Amazon certification application, do not hesitate to visit our Vcedump.com to find your solutions here.