A machine learning (ML) specialist is running an Amazon SageMaker hyperparameter optimization job for a model that is based on the XGBoost algorithm. The ML specialist selects Root Mean Square Error (RMSE) as the objective
evaluation metric.
The ML specialist discovers that the model is overfitting and cannot generalize well on the validation data. The ML specialist decides to resolve the model overfitting by using SageMaker automatic model tuning (AMT).
Which solution will meet this requirement?
A. Configure SageMaker AMT to use a static range of hyperparameter values.A beauty supply store wants to understand some characteristics of visitors to the store. The store has security video recordings from the past several years. The store wants to generate a report of hourly visitors from the recordings. The report should group visitors by hair style and hair color.
Which solution will meet these requirements with the LEAST amount of effort?
A. Use an object detection algorithm to identify a visitor's hair in video frames. Pass the identified hair to an ResNet-50 algorithm to determine hair style and hair color.A manufacturing company stores production volume data in a PostgreSQL database.
The company needs an end-to-end solution that will give business analysts the ability to prepare data for processing and to predict future production volume based the previous year's production volume. The solution must not require the company to have coding knowledge.
Which solution will meet these requirements with the LEAST effort?
A. Use AWS Database Migration Service (AWS DMS) to transfer the data from the PostgreSQL database to an Amazon S3 bucket. Create an Amazon EMR duster to read the S3 bucket and perform the data preparation. Use Amazon SageMaker Studio for the prediction modeling.A company distributes an online multiple-choice survey to several thousand people. Respondents to the survey can select multiple options for each question.
A machine learning (ML) engineer needs to comprehensively represent every response from all respondents in a dataset. The ML engineer will use the dataset to train a logistic regression model.
Which solution will meet these requirements?
A. Perform one-hot encoding on every possible option for each question of the survey.A machine learning (ML) specialist is developing a model for a company. The model will classify and predict sequences of objects that are displayed in a video. The ML specialist decides to use a hybrid architecture that consists of a convolutional neural network (CNN) followed by a classifier three-layer recurrent neural network (RNN).
The company developed a similar model previously but trained the model to classify a different set of objects. The ML specialist wants to save time by using the previously trained model and adapting the model for the current use case and set of objects.
Which combination of steps will accomplish this goal with the LEAST amount of effort? (Choose two.)
A. Reinitialize the weights of the entire CNN. Retrain the CNN on the classification task by using the new set of objects.A data scientist is building a new model for an ecommerce company. The model will predict how many minutes it will take to deliver a package.
During model training, the data scientist needs to evaluate model performance.
Which metrics should the data scientist use to meet this requirement? (Choose two.)
A. InferenceLatencyA data scientist is conducting exploratory data analysis (EDA) on a dataset that contains information about product suppliers. The dataset records the country where each product supplier is located as a two-letter text code. For example, the
code for New Zealand is "NZ."
The data scientist needs to transform the country codes for model training. The data scientist must choose the solution that will result in the smallest increase in dimensionality. The solution must not result in any information loss.
Which solution will meet these requirements?
A. Add a new column of data that includes the full country name.A data scientist uses Amazon SageMaker Data Wrangler to obtain a feature summary from a dataset that the data scientist imported from Amazon S3. The data scientist notices that the prediction power for a dataset feature has a score of 1. What is the cause of the score?
A. Target leakage occurred in the imported dataset.A company's machine learning (ML) team needs to build a system that can detect whether people in a collection of images are wearing the company's logo. The company has a set of labeled training data. Which algorithm should the ML team use to meet this requirement?
A. Principal component analysis (PCA)A company wants to use machine learning (ML) to improve its customer churn prediction model. The company stores data in an Amazon Redshift data warehouse.
A data science team wants to use Amazon Redshift machine learning (Amazon Redshift ML) to build a model and run predictions for new data directly within the data warehouse.
Which combination of steps should the company take to use Amazon Redshift ML to meet these requirements? (Choose three.)
A. Define the feature variables and target variable for the churn prediction model.Nowadays, the certification exams become more and more important and required by more and more enterprises when applying for a job. But how to prepare for the exam effectively? How to prepare for the exam in a short time with less efforts? How to get a ideal result and how to find the most reliable resources? Here on Vcedump.com, you will find all the answers. Vcedump.com provide not only Amazon exam questions, answers and explanations but also complete assistance on your exam preparation and certification application. If you are confused on your MLS-C01 exam preparations and Amazon certification application, do not hesitate to visit our Vcedump.com to find your solutions here.